

Autonomous Robot for Radiological EXploration

CER4P

Working together for a **safer industry**

THE FUTURE OF RADIATION PROTECTION

FROM CERAP'S PERSPECTIVE

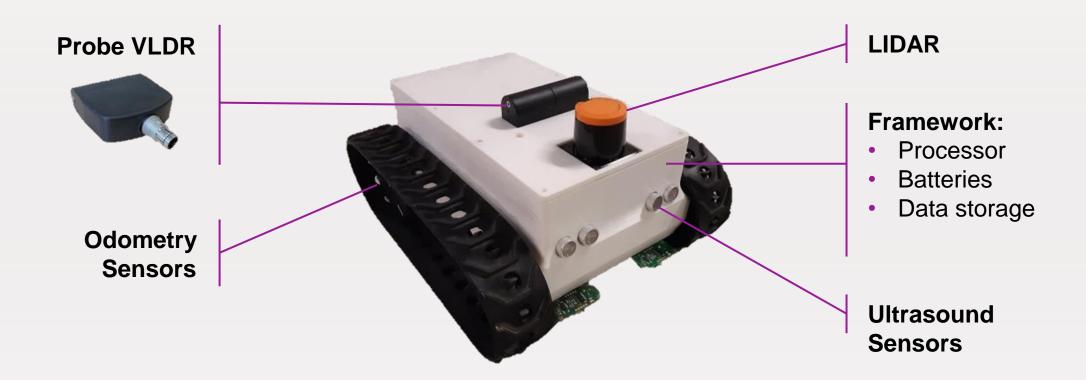

Using new technology to reduce radiation doses

AUTOMATISE Radiological measures Daily or statutory MAPPING For unknow environments With robots

ARREX PRESENTATION

ARREX is an autonomous robot used as a measuring instrument for radiation monitoring.

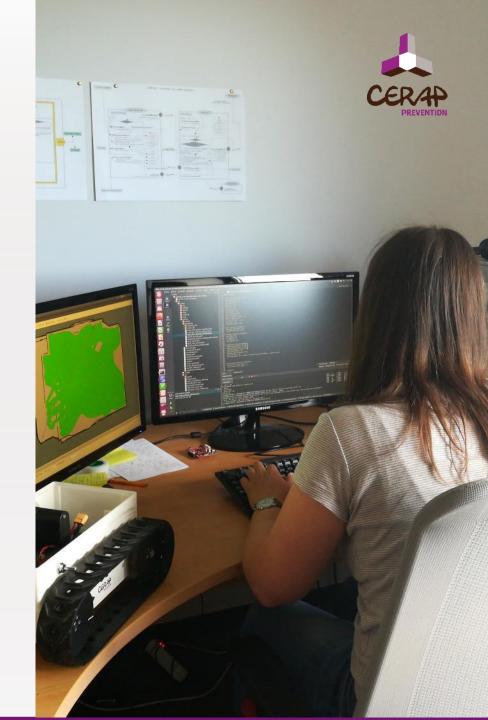
In an unknown environment, it carries out measurements over the entire accessible surface of the premises and restores them in the form of mapping.


Fully configurable, ARREX can replace Human for many missions.

- Dose Rates Map for delayed reading
- Continuous Mapping on site transmitted in real time
- ✓ Detection of hot spots and real-time warning

ARREX can be equiped with a **dustproof** and **decontaminable** bodywork in PVC or steel (shielding).

ARREX PERFORMANCES



Allow mapping of 100% of the accessible surface	Returns to the starting location at the end of the mapping	 Monitoring speed Up to 1,3 m²/min in exhaustive control mode > 2 m²/min in exploration mode 		
 Full Autonomy No route programming No data to be inputted beforehand No need for monitoring 		Avoids holes and overcomes obstacles (cable ducts, etc.) and inclined surfaces.	Recognises himself in his environment if transferred	
Operates in the dark				

ARREX CHARACTERISTICS

ARREX is exclusively made by CERAP Prevention, from its design to IT development.

- → Reduced dimensions: L 33 x I 29 x h 18 cm and 3,5 kg
- Measuring probe for dose rate VLDR (Canberra) from 0,1 µSv/h to 1mSv/h (can be replaced by another type of probe)
- Communication via WIFI with a laptop (can be deactivated)
- → Saving data to internal memory or USB stick
- → **Possibility of real-time monitoring** of the robot's path
- → Metrology: adaptation of speed to the measured dose rate

ARREX SAFETY

→ POLYMERE BODY No accessible live parts

- → HOLES AND OBSTACLES DETECTION No risk of environmental damage
- → BREAKDOWN MANAGEMENT SYSTEM

Guarantees emergency shutdown in case of loss of communication of a (functional) organ

ARREX EVOLUTIONS

Surface contamination measurement module

Scintillation counter - 300 cm2

To simultaneously and efficiently detect radiation $\gamma,\,\beta,\,\text{et}\,\alpha$

Specific mode of operation

Does not put its track in the contamination

ARREX EVOLUTIONS

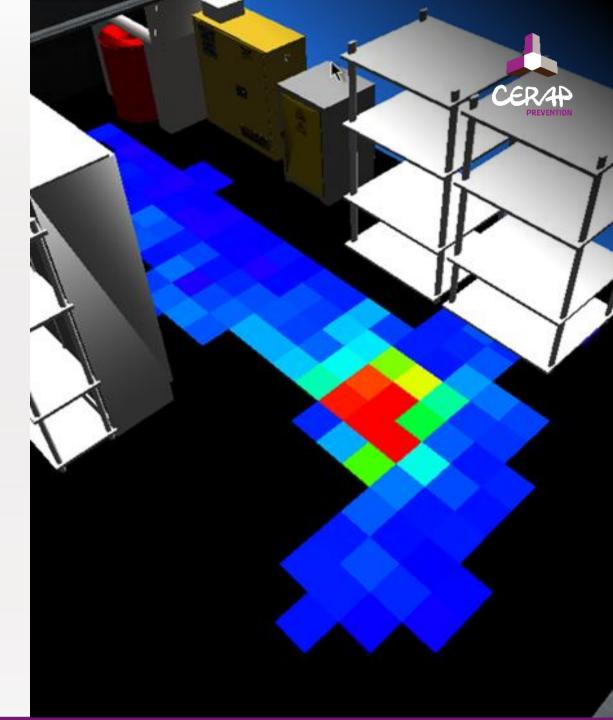
measuring module at a height 1.50m

Adjustable height for the measure

Shock Sensor

To protect the probe, the tilting of the robot and the environment.

ARREX REPORTING OF MEASURES


CERAP Prevention has developed RADMAP, a software for visualising mapping on a 2D or 3D model.

Time-stamped Measurements

 Enable a posteriori reanalysis of the evolution of dose rates in order to capitalise on experience

Real or Delayed Time

Possibility of viewing the mapping in real time (communication by WIFI) or future viewing (via USB key).

